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ABSTRACT 

In this paper we investigate the weather risk associated with 

a portfolio of solar photovoltaic assets, with focus on 

correlations and their impact on portfolios of common solar 

contracts. 

Portfolios of solar assets face a variety of risks including 

weather, equipment, operations and maintenance, 

installation quality, utility rates and credit risk.  Some of 

these risks, like credit risk, are common to many asset 

classes.  Others, like sunlight and weather risks, are less 

common risks for an asset class to have. 

In this paper, the volatility of weather risk was analyzed 

across a number of different geographic regions in order to 

determine how well weather risk for a portfolio can be 

diversified away by geographically dispersing solar 

installations.  It was found that both monthly and yearly 

correlations decrease with distance, though the trend for 

yearly correlation is less strong.  This paper provides insight 

into the weather risks of solar asset portfolios and is relevant 

to all parties involved in sourcing, financing, or modeling 

the risk of PV portfolios. 

1 INTRODUCTION 

The US solar industry has experienced tremendous growth 

in recent years, including an estimated 70% increase in 

photovoltaic (PV) installations in 2012 [1].  While there are 

a variety of factors influencing the growth, falling costs and 

more financing options play a large role. As the solar market 

grows, the magnitude of financing demand is growing with 

it.   

To support the expansion of the solar PV market, a large 

pool of capital has been deployed to fund installations to 

date, and an even larger pool of capital will be required to 

fund future growth.  In light of the growth, some parties are 

amassing significant solar portfolios and there is increasing 

interest in securitization opportunities, which would expand 

the pool of capital available for new installations [2]. 

There are many risks associated with a portfolio of solar 

assets, such as customer default risk, operations and 

maintenance risks, utility rate risks, and weather risks [3] 

[4].  While many of these risks are common for other types 

of financial products, the risk associated with sunlight 

energy is fairly unique to solar assets and as such, makes for 

an important subject for investigation. 

2 CHARACTERIZING SUNLIGHT EXPECTATIONS 

FOR INDIVIDUAL SITES AND AN OVERALL 

PORTFOLIO 

The solar industry has adopted the use of Typical 

Meteorological Year (TMY) data files to characterize 

typical long-term sunlight expectations for a planned 

installation location.  The TMY standard was created to 

represent typical meteorological years, not specifically 

typical solar years.  While TMY files generally well-

represent sunlight, there are cases where the TMY sunlight 

estimates for a location are larger or smaller than any actual 

year on record in the National Solar Radiation Database 

(NSRDB) for that location [5].  Additionally, the amount of 

sunlight energy in a given month or year can vary 

substantially, so it is important to account for the 

distribution of sunlight energy over many years, not just a 

single typical year [6]. 
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While TMY files characterize typical sunlight expectations, 

there is also a need to characterize what lower-than-normal 

annual sunlight expectations could be for a location.  This 

lower expectation can be important for various applications, 

including setting minimum energy generation promises to 

clients or sizing the reserve capital to help fund financing 

debt payments in low-production years. 

Companies using TMY datasets generally employ fixed 

discounts from the expected production level to estimate the 

lower-than-normal production level, since TMY does not 

provide the type of information needed for variability 

analysis.  Companies using a more complete historical data 

set may use P50, P90, P95, or P99 levels to assess a 

location’s variability and estimate a low-production year.  

These levels refer to energy (kWh) production levels that 

the system will exceed the specified percent of the time.  

For example, P99 is the annual kWh level that the system 

will exceed 99% of the time (i.e., a 1% chance that yearly 

production will fall below this level).  In commercial-scale 

PV projects, P50, P90, P95, and P99 levels are typically 

used to ensure projects have enough cash reserve to cover 

bad years, and these estimates are also used by financial 

institutions and rating agencies to assess the project risk [5]. 

While site-specific P50, P90, P95 and P99 analyses are 

important for assessing individual sites, portfolio-level 

analysis is relevant when a single entity is financially 

responsible for multiple solar production sites.  Since the 

financial risk is shared across the sites, the weather risk 

metrics that characterize the risk are portfolio-level P50, 

P90, P95, and P99 analyses, which are different than the 

individual comprising sites.  Therefore, when considering 

the risk that a solar asset portfolio owner faces (e.g., solar 

finance companies, securitized solar assets, etc.), 

understanding the portfolio-level risks is critical. 

Aggregating a portfolio of solar production sites will result 

in a diversified, less risky portfolio, unless the weather at 

the sites is perfectly correlated.  Equation 1 shows that the 

portfolio return is simply the weighted sum of the individual 

project returns.   
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Equation 2 shows that the expected variance of the portfolio 

return is expressed as a function of individual site variability 

and the correlation of the sites’ variability. 
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Setting up a portfolio of lowly-correlated sites can therefore 

create a low volatility portfolio. 

To illustrate the concept of solar diversification, consider 

Portfolio A with two solar PV assets, both in the San Jose, 

CA, area and both with the same expected energy output.  If 

San Jose has an unusually low amount of sunlight one 

month (e.g., due to unusually large amounts of cloud cover), 

the entire portfolio will underperform.  In contrast, consider 

Portfolio B with one solar PV asset installed in San Jose, 

and the other installed in Newark, NJ, both with the same 

expected energy output level.  Portfolio B would need to 

have unusually low solar insolation occur in both San Jose 

and Newark in order for the portfolio to be at risk of serious 

underperformance, which intuitively seems less likely than 

having an unusually cloudy month in San Jose alone.  In 

other words, the P90 output for Portfolio B will be higher 

than the P90 output for Portfolio A, because Portfolio B has 

better weather diversification. 

The energy produced by solar power plants is converted into 

dollars based on a Power Purchase Agreement (PPA) or 

leasing contract.  There are a variety of these contacts in the 

marketplace today, with different structures and terms.  

While the geographic diversification described above affects 

the risks associated with extremes in terms of energy output 

levels from a portfolio, the contract terms cover energy 

production at the individual site level and therefore add 

another layer of complexity to estimating the 

geographically-diversified portfolio’s financial returns. 

Modeling the financial impact at the portfolio level is 

required in order to accurately estimate the cash flows 

required to meet debt service payments for the portfolio and 

the level of reserve cash that should be held to maintain 

solvency through the expected volatility in the portfolio’s 

return. 

3 SUNLIGHT ENERGY ACROSS US LOCATIONS 

Data from the National Solar Radiation Database (NSRDB) 

was used to conduct analyses of sunlight energy across a 

large number of locations.  The NSRDB contains hourly 

data for 1,454 sites from 1991 to 2010, shown in Fig. 1 [7].  

Class III sites were excluded from this analysis, as they are 

known to contain large gaps in measurement reporting.  

This leaves 860 sites with high-quality data for analysis. 
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Fig. 1: NSRD Station Locations and Classes 

Fig. 2 shows the mean annual sunlight insolation across the 

US.  Some regions of the country are clearly sunnier than 

others.  While the mean sunlight insolation drives the 

overall return from a solar portfolio (Equation 1), to model 

the variability of a solar portfolio it is necessary to 

understand both the variability of the installation locations 

and their correlations (Equation 2). Coefficient of variation 

(CV) is a useful metric in this context, since it describes 

standard deviation relative to the mean (Equation 3). 

(3)       
 

 
 

 

This metric can help answer the question “What percent 

variation should I expect in sunlight energy?”  As shown in 

Fig. 3, the yearly coefficient of variation varies significantly 

from location to location, but there appear to be some weak 

geographic trends (e.g., slightly more volatile in coastal 

regions). 

 
Fig. 2: Mean annual solar insolation 

 
Fig. 3: Coefficient of variation for yearly solar insolation 

Understanding sunlight correlations between locations is 

necessary to calculate expected variability of portfolios of 

solar assets, as shown in Equation 2.  Earlier work has 

analyzed irradiance correlations across different sites, but 

generally at a short time scale (e.g., 1-second to a few 

hours) [8] [9].  For the case of solar portfolio performance, 

monthly or annual correlations are needed, since those are 

the time horizons at which debt service payments are 

typically made or energy generation contract minimums are 

set. 

From an investment perspective, the sunlight correlations of 

interest are correlations in the difference from expectations 

at each site.  Investments in solar sites, and their associated 

financial models, are based on the expected sunlight for the 

location.  The under or over performance across sites should 

therefore be measured relative to the baseline expectations. 

Using the twenty years of data from the NSRDB, 

correlations were calculated among the 860 Class I and 

Class II high-quality weather stations on monthly and 

annual time scales, using global horizontal irradiance data 

(GHI). 

4 MONTHLY SUNLIGHT CORRELATION 

For this analysis, monthly NSRDB insolation data was 

converted into percent over or under the typical insolation 

for each location for each month of the year, allowing 

comparison of difference from expectations and removing 

seasonality.  Correlations of these values were calculated 

between all possible pairings of locations. 

Figures 4 through 6 illustrate how these correlations in 

insolation patterns vary with the geographic location of the 

pair under consideration.  Each figure fixes one member of 
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the pair (Newark, Denver, or San Francisco), while mapping 

the location of the other member, with warmer colors 

indicating a higher correlation between that pair. For 

purposes of these color maps, negative correlations were 

plotted as zero (few negative correlations were observed). 

 
Fig. 4: Monthly insolation correlation to Newark, NJ 

insolation 

 
Fig. 5: Monthly insolation correlation to Denver, CO 

insolation 

 
Fig. 6: Monthly insolation correlation to San Francisco, CA 

insolation 

While correlation drops with distance, there is clearly some 

dispersion around the general trend.  To better understand 

the trend with respect to distance, correlations were 

calculated for all station pairs and plotted versus distance.  

Fig. 7 shows a straight plot of the correlations, along with 

lines indicating the median, 25th, and 75th percentiles at 

each distance. 

 
Fig. 7: Monthly correlation between NSRDB locations as a 

function of distance 

While there is significant dispersion in the results, there is 

generally a steep decrease in correlation with distance up to 

about 1500 km, with a median correlation of about 0.31 at 

that distance.  Beyond 1500 km, increasing distance does 

not appear to significantly reduce correlation.  A linear fit 

for the correlation of locations less than 1500 km apart 

yields an R2 of 0.45, indicating a fairly strong relationship 

between correlation and distance. 

5 ANNUAL SUNLIGHT CORRELATION 

Twelve-month rolling sums of insolation data were created 

from the monthly data, to simulate typical annual solar 

contract periods, and this data was converted into percent 

over or under the typical yearly insolation for each location. 

Figures 8 through 10 illustrate how patterns in this annual 

measurement of insolation vary with the geographic location 

of the pair under consideration. Yearly correlations were 

also calculated for all station pairs and plotted versus 

distance.  Fig. 11 shows a straight plot of the correlations, 

along with lines indicating the median, 25th, and 75th 

percentiles at each distance. 
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Fig. 8: Yearly insolation correlation to Newark, NJ 

insolation 

 
Fig. 9: Yearly insolation correlation to Denver, CO 

insolation 

 
Fig. 10: Yearly insolation correlation to San Francisco, CA 

insolation 

 
Fig. 11: Yearly correlation between NSRDB locations as a 

function of distance 

As shown in Fig. 11, annual correlations are generally 

higher than monthly correlations.  While annual correlation 

decreases with distance, the decrease in correlation is not as 

steep as for monthly, and the relationship with distance is 

not as strong as is seen with monthly correlations.   

The higher annual correlations could be due to global effects 

that have a long-term impact not as visible in the monthly 

correlations.  One example of an effect is the impact of the 

1991 Mount Pinatubo eruption.  The aerosols from this 

eruption affected sunlight though 1994, and had a negative 

impact on insolation across US locations during this time 

[5].  Fig. 12 shows frequency plots of site pair correlations 

using the full 1991-2010 data set and a 1995-2010 subset of 

the data.  The chart indicates that the volcano-affected time 

period increases the overall yearly correlations, i.e., if not 

for the high correlation across the US during these years, 

correlations between the site pairs would have been lower 

(though still generally higher than monthly correlations).  

Insolation measurements showed a global upward trend over 

the 1991-1994 period as aerosols were slowly dissipating 

after the eruption.  The monthly correlations were not 

substantially affected by the volcano eruption, however. 
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Fig. 12: Yearly correlations between NSRDB sites, 

calculated with and without Mount Pinatubo-affected years 

6 CONNECTING INSOLATION DATA TO 

FINANCIAL IMPACT FOR A SOLAR SITE 

Energy produced by a solar asset is converted into a 

financial value according to a contract between the asset 

owner and an entity that agrees to pay for the energy 

production.  For commercial scale projects, the buyer is 

typically a utility or other business.  For residential scale 

projects, the buyer is typically a homeowner. 

Contracts for the purchase of produced energy typically 

have some of the following features: 

1. Price for energy produced: The price may be a 

fixed price regardless of energy output (e.g., as in a 

leasing agreement), or a $/kWh rate 

2. Expected production amount: The amount of 

energy that the asset owner expects to be produced 

by the solar asset 

3. Minimum guarantee amount: A minimum 

guarantee level for the energy to be produced, 

below which the asset owner will compensate the 

buyer for the below-expectations production 

4. Penalty for below-minimum production:  

Typically a $/kWh rate for the amount of energy 

below expectations 

5. Roll-over clause: A roll-over clause defines 

whether or not excess production in one year (i.e., 

production above the minimum guarantee level) 

accumulates to count against minimum production 

requirements in future years. 

6. Term: Length of the agreement 

7. Weather adjustment: Some contracts include 

weather adjustments (e.g., irradiance adjustment) 

for energy expectations  

Fig. 13 illustrates the payout from a contract with a fixed 

$/kWh rate and no penalty clause.  Since sunlight insolation 

translates fairly directly into kWh energy production for a 

solar asset, the sunlight energy translates fairly directly into 

financial impact according to the $/kWh conversion rate. 

 
Fig. 13: Payout profile for a contract with a fixed $/kWh 

rate and no minimum production penalty 

Fig. 14 shows a $/kWh contract with expected production 

level of Q1 and minimum guarantee level of Q2, below 

which penalties reduce the amount paid for energy 

production.  For a given site, the smaller the difference is 

between Q1 and Q2, the higher the risk.  The risk of reaching 

the Q2 minimum guarantee level is dependent on the 

volatility of the insolation for the site.  As shown in Fig. 3, 

the insolation volatility can vary significantly across 

different locations.  Across the full NSRDB Class I and 

Class II data set, twelve-month insolation coefficients of 

variation were observed between 2% and 12%, indicating a 

wide range of potential insolation variability levels.  

Therefore, to maintain similar risk levels across sites, a firm 

would need to contract the penalty clause at a probability-

based level of hitting the minimum guarantee level (e.g., 

P90 assessment) that takes into account site-specific 

insolation volatility levels, rather than using a fixed discount 

rate on the expected production level. 

Fig. 15 shows a fixed price contract with expected 

production levels of Q1 and penalty levels of Q2, below 

which penalties reduce the amount paid for energy 

production.  The financial model for this contract structure 

is similar to what was described above for Fig. 14, but 

because of the flat pricing above the minimum production 

level, either a larger spread is required between Q1 and Q2, 

or the P1 pricing level needs to be set higher than in the Fig. 

14 example in order to achieve equivalent expected value. 

Q1
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Fig. 14: Payout profile for a contract with a fixed $/kWh 

rate and a minimum production penalty level 

 
Fig. 15: Payout profile for a contract with a fixed price and a 

minimum production penalty level 

When contracts with production minimums are involved, an 

important element of the contract is whether or not any 

excess over and above the minimum is banked from year to 

year.  When banked, the minimum becomes less of a risk 

each year, because the expected production is substantially 

above the minimum production level (i.e., if expectations 

are set properly, the bankable rollover amount should 

quickly become a large buffer).  Conversely, contracts with 

minimums and rollover clauses are much more risky when 

they are less seasoned and therefore lack an accumulated 

rollover buffer.  Two approaches to reduce the risks of 

unseasoned contracts are to set a lower minimum in the 

early years of the contract, or to define the minimum level 

for penalties as a multi-year period early in the contract 

(e.g., penalties only apply if below the accumulated 

minimum at the end of the second year of the contract). 

Weather-adjusted contract terms can be applied to the 

minimum production levels.  This type of contract shifts 

solar asset weather risk from the asset owner to the entity 

contracting for the energy off take, while keeping energy 

production risks due to other reasons (e.g., operations and 

maintenance issues) with the asset owner.  For asset owners 

with fixed rate contracts with minimums (i.e., Fig. 14), the 

owner still has some weather risk remaining.  The weather 

adjustment only removes the downside penalty by 

effectively converting the payout profile to be a plain fixed-

rate contract (Fig. 13) from a weather risk perspective, since 

lower energy production will still result in lower revenue.  

For asset owners with fixed price contracts (i.e., Fig. 15), a 

weather adjustment clause can shift the weather risk entirely 

to the entity contracting for energy off take, because only 

non-weather-related energy production losses will trigger 

the penalty. 

7 CONNECTING INSOLATION DATA AND 

CONTRACTS TO FINANCIAL IMPACT FOR A 

SOLAR PORTFOLIO 

The site-level contract models can be aggregated into 

overall portfolio models.  In the case of a portfolio 

consisting of fixed $/kWh contracts as shown in Fig. 13, all 

at the same rate, the overall portfolio’s financial 

performance can be estimated from the portfolio’s insolation 

characteristics (i.e., Equation 1 and Equation 2, multiplied 

by the $/kWh rate).   

If the portfolio contains additional complexity from 

different $/kWh rates or minimum production penalties, 

individual sites within the portfolio will need to be modeled 

individually and aggregated into the overall portfolio model. 

Despite the need to model portfolios by modeling the 

discrete assets and aggregating results, some general 

observations can be made: 

1. Examining monthly insolation correlations reveals 

there is significant opportunity for diversification 

with respect to managing monthly volatility in a 

portfolio of solar assets.  Since solar asset owners 

often are paid monthly for energy generated, and 

also need to make debt service payments for 

financing on a monthly basis, the ability to 

diversify and reduce monthly cash flow 

mismatches is important. 

2. Examining yearly insolation correlations reveals 

that there is an opportunity to diversify the overall 

portfolio, though it is less significant than on the 

monthly level.  The yearly correlations have 

implications for the design of cash reserves to 

support a portfolio through a bad year or years 

affecting all locations (e.g., as followed the Mount 

Pinatubo eruption). 
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3. Portfolios with contracts containing minimum 

production penalties benefit significantly from 

geographic diversification, since if concentrated 

geographically the asymmetric downside risk in 

these contracts could lead to steep decreases in 

revenue in outlier years.  This is particularly true 

for fixed-price contracts as shown in Fig. 15, since 

these contracts do not benefit from kWh 

outperformance vs. expectations, and geographic 

diversification is important to reduce the downside 

risk. 

8 CONCLUSIONS 

Owners of solar assets should manage their portfolio in the 

same way as any conventional asset portfolio.  To do so, 

asset owners should consider sunlight and other weather 

data volatility and correlation as part of their overall 

investment decision-making process. 

The intuitive idea that solar installations farther apart should 

be less correlated does in fact hold.  Reduction in monthly 

volatility is very achievable through geographic 

diversification, since correlations drop steeply out to about 

1500 km.  Geographic diversification also reduces annual 

volatility, but the strict relationship between distance and 

correlation is not as strong. 

With respect to contract design, if minimum guarantee 

levels are specified it would be best to set them according to 

consistent risk levels (e.g., P90), to achieve even risk 

allocation across contracts.  In the early years of a contract 

with minimum production levels and roll-over 

accumulation, contracts with lower minimum kWh 

thresholds or multi-year initial evaluation levels could 

reduce the risks of failing to meet the contract.  

The concepts described in this paper can be combined with 

standard portfolio calculations (Equations 1 and 2) to 

estimate the risks associated with a planned or current solar 

asset portfolio, as well as evaluate the potential impact on a 

solar portfolio of adding new solar assets in different 

locations. 

9 FUTURE WORK 

A better understanding of global effects at play in yearly 

correlations could support modeling yearly correlations 

across geographies outside the sample set used in this paper 

(i.e., extending the model results outside the United States). 

Here, we examined one known global mechanism that was 

at play (aerosols blocking sunlight after a 1991 volcano 

eruption), but there are inevitably other factors to consider.  

Given the importance of yearly correlations for solar 

prospecting activities, and the difficulty associated with 

collecting long time-histories of site-specific data, a more 

sophisticated yearly correlation model could be quite 

valuable to asset owners modeling a global portfolio. 
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