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ABSTRACT 
 
PV modules were deployed at a demonstration site in 
metro Atlanta in 2009. We implemented a suite of models 
in MATLAB and evaluated the performance of key 
radiation models and PV array models using onsite PV 
measurements. Radiation models had comparable 
performance in calculating the total incident radiation. 
The Sandia PV model out-performed the 5-parameter PV 
model in accurately calculating cell temperature and 
power. Modeled PV power output was corrected for bias. 
Residual analysis indicated that an apparent source of bias 
in the PV models was the underprediction of incident total 
radiation associated with cloudy days in the Southeastern 
US. We calculated bias-corrected power output for 14 
years for each PV module using historical data, and 
examined the temporal variability of PV outputs. Power 
output calculated using TMY data appeared to be biased 
slightly high relative to the mean of the 14 year time 
series. 
 
1. INTRODUCTION 
 
Photovoltaic (PV) output depends on the local solar 
insolation and weather, and so is highly variable. In order 
to make PV investment decisions, one needs to predict the 
PV output and how this variable output will contribute to 
system-wide generation. 
 
Meteorological data sets and engineering models of PV 
systems have been assembled by Department of Energy 
laboratories and private firms in order to predict PV 
output. Various studies have been undertaken to 
implement these models and validate their performance. 
Typical meteorological year (TMY) aggregated weather 
data are widely used for solar power prediction. Satellite-
based solar data have also been validated and used in the 
PV modeling [1]. The performance of various radiation 
models for computing the solar radiation on inclined solar 
panel surfaces were studied (e.g. [2]), as well as various 
PV system performance models (e.g. [3]). A standardized 

approach was proposed to validate the PV performance 
models [4].  
 
The System Advisory Model (SAM) created by the 
National Renewable Energy Laboratory (NREL) has been 
widely used in PV value estimation, PV technology 
comparisons, and system monitoring. A MATLAB 
toolbox was recently developed [5]. NREL SAM and its 
component models have been tested extensively at sites in 
the Southwestern US, and the accuracy of predictions for 
sites in the Southeastern US is unknown.  
 
In this paper, we evaluated the deployment of 
photovoltaic (PV) generation capacity at a demonstration 
site in metro Atlanta, GA. The installed PV modules 
included a range of technologies: monocrystalline silicon, 
polycrystalline silicon, and several different thin film 
technologies. Multiple suites of radiation models and PV 
performance models were compared. Residual analysis 
was carried out on multiple levels in order to improve 
model accuracy and to further explore the sources of 
model inaccuracy. Finally, the long-term variability of PV 
outputs was analyzed using simulations.   
 
2. DATA AND MODEL SPECIFICATIONS 
 
2.1 PV Demonstration Sites 
 
Seven PV modules were deployed at a demonstration site 
located in metro Atlanta, GA (TABLE 1). The nominal 
capacity of each PV array was approximately 4 kW. 
Arrays were south-facing with a tilt of approximately 10 
degrees. Extensive data were collected including PV 
performance and meteorological data for over 2 years. 
The primary goals of the demonstration project were to 
evaluate the output of prospective PV installations and 
data-model combinations to predict PV output in the 
Southeastern US. 
 
The PV data included time series of output variables of 
photovoltaic panels, strings and some key meteorological 



2 

 

measurements from an on-site weather station (WS). For 
each of 7 PV modules average DC power, DC voltage, 
and average AC power were measured at the inverter. Cell 
temperature was recorded by probes on the back of 
modules. The main WS recorded key meteorological 
measurements including solar insolation, ambient 
temperature, and wind speed. A reference cell was 
installed to provide calibrated electrical output. The 
plane-of-array (POA) incident radiation from the 
reference cell was used for model comparisons. The 
original sampling frequency for all variables was 15 
minutes. Hourly averages were calculated and used for 
model assessment.  
 
TABLE 1: DEMONSTRATION PV ARRAYS  
 
Array Solar Cell Technology PV Model 

A1 Monocrystal Sandia 

A2 Monocrystal  Sandia 

A3 Polycrystal Sandia 

A4 Monocrystal Sandia 

A5 Thin Film Amorphous Sandia 

A6 Thin Film  CEC 

A7 Thin Film  CEC 

 
2.2 Solar and Meteorological Data 
 
Inputs to PV models generally require hourly data for 
Global Horizontal Irradiance (GHI), Direct Normal 
Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), 
ambient temperature, and wind speed. Insolation of PV 
cells was calculated from GHI, DNI, and DHI. In 
addition, temperature and wind speed are used to estimate 
the cell temperature of the PV modules.  
 
Multiple sources of input solar and meteorological data 
including the satellite data, ground level weather station, 
and onsite measurements were used in this paper. Solar 
and meteorological data from 1998 through 2011 at 
Atlanta site were provided by a commercial source for 
solar irradiance time series data. These solar irradiance 
data were generated from satellite data,  
 
Hourly meteorological measurements and modeled solar 
values from TMY3, “typical year” data created by the 
National Renewable Energy Laboratory (NREL), were 
used in this study. In addition, satellite-based TMY data 
for “DNI average months” (TMY-DNI) and “GHI 

average months” (TMY-GHI). The months for these 
TMYs were chosen as the month with GHI or DNI 
irradiance closest to the average over the period 1998 
through 2011.  
 
In this study, GHI ground measurements were provided 
for a nearby weather station. Eight months of the GHI 
ground measurement at the central Atlanta area 
overlapping with the PV demonstration site were used in 
the validation study.  
 
2.3 PV Output Modeling 
 
The System Advisory Model (SAM) created by NREL 
integrates state-of-art meteorological data sets and 
engineering models of PV systems in order to model 
power outputs. We encoded the key component models in 
NREL SAM as MATLAB functions (“SAM in 
MATLAB”) in order to perform computations not readily 
available in the NREL SAM system; these included 
simulations using multiple years of actual meteorological 
data, and large numbers of component model runs.  
 
Multiple radiation models were used to calculate POA 
radiation, including the isotropic sky model [6], the Hay-
Davis-Klutcher-Reindl (HDKR) model [7-9] and the 
Perez model [10]. These 3 radiation models were 
implemented in SAM in MATLAB and compared. All 
incident radiation data on the PV array were adjusted by 
shading and soling factors. Two major PV system 
performance models, the Sandia [11] and the CEC "Five 
Parameter" [12] PV models were implemented and 
compared. The Sandia inverter performance model [13] 
was used to calculate AC power output. Both DC and AC 
power outputs were adjusted by the SAM default derate 
factors. 
 
3. RESULTS 
 
3.1 Model Selection 
 
Results from SAM in MATLAB were compared with 
NREL SAM implementations to verify the agreement on 
hourly and monthly time scales. The model outputs from 
SAM in MATLAB were in close agreement with those 
from NREL SAM. The relative errors of AC power were 
below 1% for Sandia PV array model and approximately 
1.5% for the CEC PV model. The NREL SAM version 
used here was 2011.12.2. 
 
We examined the total radiation incident to a PV panel  
( TE ) to evaluate three radiation models: the isotropic sky, 
HDKR, and Perez models. The incident radiation 
estimations from three radiation models were compared 
with the reference cell at the demonstration site. Root 
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mean square errors (RMSE) were calculated, and the rank 
for three radiation models was Perez < Isotropic < HDKR 
(TABLE 2).  
 
TABLE 2: RMSE VALUES OF ARRAY A1 
COMPARING RADIATION AND PV MODELS. 
 

Model Set 

Hourly Data 

TE  

(kW/m2) 

CT  

(C) 

DCP  

(kW) 

ACP  

(kW) 

IsoSky+Sandia 0.107 5.093 0.361 0.347 

HDKR+Sandia 0.108 5.198 0.361 0.347 

Perez+Sandia 0.104 4.968 0.362 0.348 

IsoSky+CEC 0.107 8.563 0.351 0.34 

HDKR+CEC 0.108 8.881 0.347 0.335 

Perez+CEC 0.104 8.461 0.345 0.334 

 
Monthly Data 

IsoSky+Sandia 0.041 2.917 0.068 0.068 

HDKR+Sandia 0.038 3.06 0.057 0.056 

Perez+Sandia 0.034 2.772 0.055 0.054 

IsoSky+CEC 0.041 6.159 0.117 0.116 

HDKR+CEC 0.038 6.659 0.105 0.105 

Perez+CEC 0.034 6.072 0.099 0.099 

 
The relative mean absolute errors (RMAE) were also 
calculated as 
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where ,Model iX and ,Demo iX were modeled and measured 
values respectively. The rank of RMAE was HDKR < 
Perez < Isotropic (TABLE 3). However, the differences in 
error rates among the three radiation models were within 
1% of total radiation. Comparing the error rates for 
monthly output data, the Perez model consistently 
returned more accurate estimates of total radiation. 
Therefore, the Perez model was preferred in total 

radiation calculation as suggested in the NREL SAM 
documentation.  
 
TABLE 3: RMAE VALUES OF ARRAY A1 
COMPARING RADIATION AND PV MODELS. 
 

Model Set 
Hourly Data 

TE (%) CT (%) DCP
(%) 

ACP
(%) 

IsoSky+Sandia 18.50 9.27 15.86 15.96 

HDKR+Sandia 17.47 8.73 15.78 15.84 

Perez+Sandia 17.72 9.02 15.85 15.89 

IsoSky+CEC 18.50 15.87 17.74 17.97 

HDKR+CEC 17.47 15.35 17.28 17.50 

Perez+CEC 17.72 15.67 17.07 17.29 

 
Monthly Data 

IsoSky+Sandia 9.60 9.77 4.28 4.42 

HDKR+Sandia 8.25 9.71 3.53 3.68 

Perez+Sandia 8.12 9.25 3.40 3.51 

IsoSky+CEC 9.60 20.89 8.98 9.37 

HDKR+CEC 8.25 21.54 8.10 8.50 

Perez+CEC 8.12 20.57 7.62 8.02 

 
We compared measured cell temperatures ( CT ) of PV 
modules at the Atlanta site with cell temperatures 
calculated from the Sandia and CEC thermal models. The 
Sandia thermal model performed better than the CEC 
thermal model in terms of both RMSE and RMAE 
(TABLE 2 and TABLE 3). The estimates of cell 
temperature of both Sandia and CEC thermal models were 
in general biased low.  
 
The performance of the Sandia and CEC PV models were 
evaluated by comparing DC and AC power ( DCP  and  

ACP ) to the measurements from the Atlanta site. Since 
measured DNI and DHI were not available for PV array 
model validation, all radiation and weather input variables 
were from the satellite time series data. With the same 
radiation and weather inputs, the Sandia PV model 
performed better than CEC PV model in terms of 
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producing smaller RMSE and RMAE errors (TABLE 2 
and TABLE 3). 
 
Comparisons of modeled and measured values for other 
modules at the same site also supported the conclusion 
that Sandia models outperformed the CEC models in 
estimating cell temperature and power output. We selected 
Perez, Sandia Thermal, Sandia PV as the preferred model 
set. For modules for which Sandia model parameters were 
not available, the selected model set was Perez, CEC 
Thermal, and CEC PV.  
 
3.2 Module Performance 
 
We generated PV output predictions for the 2-year study 
period, and compared the modeled power outputs with the 
onsite measurements. Five out of 7 modules at the 
demonstration site had negative mean bias errors (MBE) 
ranging from -0.57% to -10% (see TABLE 4); in these 
cases the model underestimated the power output. Two 
modules had positive bias errors of 17% and 29%. 
 
TABLE 4: MODEL PERFORMANCE EVALUATION 
WITH MBE, RMSE AND RMAE (HOURLY AND 
MONTHLY). 
 

PV 
Array 

MBE 
(%) 

RMSE (kW) RMAE (%) 0d  

Hour Mon. Hour Mon. 
A1 -0.57 0.34 0.05 15.92 3.51 1.01 

A2 -10.2 0.38 0.14 19.42 10.51 1.11 

A3 -5.67 0.36 0.08 18.17 6.05 1.06 

A4 -6.85 0.37 0.11 18.01 7.37 1.07 

A5 17.22 0.42 0.20 26.02 17.14 0.85 

A6 -0.71 0.34 0.05 16.45 3.52 1.01 

A7 29.10 0.46 0.27 36.14 28.81 0.77 

 
The bias in AC power for each module can be considered 
a combination of site-specific and module-specific effects. 
The main site-specific effect on AC power biases was the 
bias error for estimated total radiation, which was -7.31% 
at the Atlanta site. Thus the recommended radiation 
models appear to have systematically under-estimated 
solar radiation at the Atlanta site. The module-specific 
biases were likely due to inaccurate PV model 
coefficients. PV module manufacturers likely understate 
the nominal power in order to ensure that modules 
generate at least the specified power. This is consistent 

with the negative bias in AC power output observed for 
most modules. For Arrays A5 and A7, measured power 
outputs were systematic lower than predicted power 
outputs; this was likely due to misspecification of the PV 
capacity parameters. It was also later found that 1 of 8 DC 
strings on Array A7 had a blown fuse for the majority of 
the study period. 
 

Fig 1: Measured (red line) and modeled (black line with 
dots) PV system outputs ( TE , CT , DCP  and ACP ) for Array 
A4. 
 
The comparison of measured and modeled intermediate 
variables for Array A4 (Fig 1) showed that the residual in 
PV power output tended to follow the same pattern as the 
residual in POA radiation.  Cell temperature was 
systematically underestimated compared to actual cell 
temperature. In order to determine the source of 
differences between modeled and measured PV power, we 
analyzed the residuals of inputs and modeled intermediate 
values with respect to AC power output.  
 
4. RESIDUAL ANALYSIS AND SIMULATIONS 
 
4.1 PV Bias Correction 
 
In order to remove the systematic bias in calculated PV 
output, we multiplied the calculated PV output by a 
scaling coefficient, d . The MBE of the calculated PV 
output was then determined for d  ranging from 0.5 to 
1.5. MBE for each PV array was a linear function of bias 
coefficient d (Fig 2). The recommended coefficient, 0δ , 
was then selected for each PV array such that the MBE 
was zero. Coincident with the reduction in MBE, the 
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RMAE of the calculated PV output was reduced to 
approximately its minimum value for each PV array.  
 

 

Fig 2: MBE (dashed line) and RMAE (solid line) of 
calculated PV output as functions of bias-correction 
coefficient d  for Array A4 
 
The residual plots indicated that bias correction improved 
model performance most significantly during clear days 
in summer and winter when PV energy production was 
relatively high. However, the modeling error inherent in 
the solar radiation inputs could not be reduced by 
correcting the PV array capacity bias. For Array A4, 
RMAE equaled 18% when MBE was zero, and this 
coincided with the RMAE of total radiation TE . PV 
output RMAE was approximately equal to total radiation 
RMAE for all modules after the capacity bias corrections; 
this suggests that much of the error in PV models 
(separate from solar radiation models) can be removed by 
using a single scaling factor based on actual PV array 
performance. 
 
4.2 Residual Analysis  
 
In order to further understand the cause of differences 
between measurements and model calculations, we 
undertook detailed residuals analyses for Array A4, 
because the reference PV cell was located adjacent to it, 
and this module had typical MBE, RMAE, and RMSE 
values. A 6-month dataset was used which included 
complete PV and nearby weather station measurements. 
In this subsection, the modeled PV output has been scaled 
by 0d . 

 
Fig 3: Residual comparisons for Array A4. 
 
Residuals in ACP  had a strong positive linear relationship 
with residuals in TE  which suggests that the variability in 
modeled power output was mainly caused by errors in 
radiation estimation (Fig 3). Residuals in ACP  plotted 
against the residuals in GHI, the only measured 
component of solar radiation, also showed a strong 
positive correlation (Fig 3). Here, the residuals in GHI 
were calculated as the difference between satellite-based 
GHI and GHI measured at the local weather station. GHI 
and DNI data measured at the demonstration site were not 
available though. The correlation of GHI with TE  
suggests that the accuracy in the calculation of TE  was 
largely affect by the accuracy of the input solar values.  
 
We further investigated the relations between residuals in 
AC power and other variables, including zenith angle, sky 
clearness, ambient temperature, and relative humidity. 
Sky clearness indices were calculated as  
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where Zq  is the zenith angle, diffI and dnI  are the 
horizontal diffuse irradiance and direct normal irradiance 
respectively [10]. Higher values of sky clearness index 
indicate clearer skies.  
 
Low zenith angles were associated with relatively high 
power residuals (Fig 4). Residuals tended to be relatively 
large and negative for overcast hours and the discrepancy 
in power was as much as 1.5 kW. Relatively high sky 
clearness values were associated with overestimated 
power. The largest residuals in power were associated 
with high ambient temperatures and moderate relative 
humidity (Fig 4). One explanation for high variability in 
power when ambient temperature was high and zenith 
angle was low is that power output itself was relatively 
large under these conditions, i.e. midday in summer.  

 
Fig 4: Residual comparisons for Array A4: residuals in 
power against zenith angle (upper left), sky clearness 
index (upper right), ambient temperature (lower left) and 
humidity (lower right).  
 
In conclusion, the main source of variability in PV power 
output was the input radiation data. Power outputs were 
most inaccurate and variable during warm and clear days, 
when solar radiation was also high. These periods likely 
correspond to partly cloudy conditions during sunny 
seasons when solar radiation was highly variable spatially 

and the solar radiation modeled for an area by satellite 
data did not match exactly the solar radiation at the site. 
In addition, the satellite-based radiation data appears to 
underestimate GHI on overcast days at the demonstration 
site. However, without complete onsite solar 
measurements, including GHI, DNI and DHI, it was not 
possible to validate radiation models for local conditions. 
 
4.3 Decomposition of Sandia PV model 
 
The Sandia PV performance model [11] estimated the 
current and voltage as functions of the effective radiation 
( eE ) and cell temperature ( CT ) at the maximum power 
point as:  

2
, 0 1 0( )[1 ( )]= ´ + + -mp mp ref e e Imp cI I C E C E T Ta  (3) 

, 2

2
3 0

( ) log( )

[ ( )log( )] ( )( )

= +

+ + -
mp mp ref c c e

c c e Vmp e c

V V C N T E

C N T E E T T

d

d b
  (4) 

Here, 0 1 2 3, , ,C C C C  were empirically determined and 
taken from the NREL SAM parameter library.  

 
Fig 5: DC current and DC voltage as functions of POA 
radiation for Array A4 for the onsite measurements (left 
panels) and the model outputs after bias correction (right 
panels). 
 
Both measured and modeled PV output showed that DC 
current scaled linearly with total irradiance; while the DC 
voltage scaled nonlinearly (Fig 5). Cell temperature had 
little impact on modeling DC current and coefficient Impa
was close to zero. Onsite measurements showed larger 
variation than the model output, because the onsite solar 
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radiation measures were more variable than the satellite-
based solar data. Applying the bias correction helped 
adjusting the fits between solar irradiance and 
current/voltage respectively.  Using a large number of 
onsite measurements recorded on both clear and 
cloudy/overcast days, one could likely refit the Sandia PV 
model parameters accurately.  
 
4.4 Simulations of Long-Term PV Output 
 
We calculated PV output from the entire satellite solar and 
meteorological time series from 1998 through 2011, as 
well as the satellite TMY-GHI data, satellite TMY-DNI 
data and NSRDB TMY3 data. The Perez model was used 
to convert GHI, DNI, and DHI into solar irradiance on 
tilted PV panels. The Sandia thermal and Sandia PV 
model were used to predict cell temperature, output DC 
voltage and DC power if parameters for the Sandia PV 
model were available. The CEC thermal and CEC PV 
models were used if parameters for the Sandia PV model 
were not available. The Sandia inverter model was 
applied to calculate AC power. The 14-year time series of 
PV output predictions along with intermediate predictions 
including total irradiance, effective irradiance, cell 
temperature, DC voltage, DC power, were generated. The 
PV output predictions for TMY-GHI, TMY-DNI and 
TMY3 input data were also calculated. For each PV array, 
the PV power output has been scaled by its corresponding 
bias-correction coefficient. 
 
Estimated annual PV power output for the 7 PV arrays 
over the years 1998 through 2011 showed a relative range 
of approximately 15% (Fig 6). The variability of annual 
energy productions over 14 years was similar among 7 PV 
arrays at the demonstration site, because the main source 
of variability was the input solar radiation and the 
nominal capacity of each module assembly was the same 
(Array A7 was the only exception). 
 
We compared the annual energy predicted from long-term 
solar and meteorological data with the annual energy 
predicted using TMY-GHI, TMY-DNI and TMY3 input 
data. The annual energy values predicted from TMY3 
deviated from those predicted from TMY-GHI and TMY-
DNI by 1.5 to 3.5% (Fig 6). It also appeared that TMY3 
was not as representative as the TMY-GHI and TMY-
DNI when comparing with long-term prediction data. 
However, this may be an artifact that the time series data 
and the satellite TMY data had the same source data, 
whereas NREL TMY3 were developed using a different 
algorithm and time period. 
 

 

Fig 6: Distribution of annual energy production from the 
seven PV arrays estimated using the satellite time series 
(box plots) and typical meteorological years (triangles). 
Measured annual energy production values are shown as 
asterisks and dots. 
 

 
Fig 7:  Distribution of monthly energy production from 
Array A4 simulated using the satellite time series (box 
plots) and typical meteorological years (triangles). 
Measured monthly energy production values are shown as 
asterisks and dots. 
 
We also examined the predicted energy generated for each 
month for the years 1998 through 2011. For each of the 7 
PV modules, we used the 14-year samples to assess the 
variability of monthly energy output, and compared them 
with actual energy output as well as energy output 
predicted based on TMY data (Fig 7). 
 
We observed high variability in monthly energy 
predictions during the spring and fall, i.e., February 
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through May and September through October. The highest 
estimated solar energy production was during May. High 
levels of solar energy were predicted to have been 
generated during July and August with relatively low 
variability during these months.  
 
We compared the monthly energy predicted using TMY-
GHI, TMY-DNI and TMY3 input data and the actual 
energy measurements. The monthly energy predictions 
were close to the measurements for June through August. 
The component models appeared to underestimate 
monthly energy during September and October. These 
comparisons are site-specific but may demonstrate typical 
variance between TMY and long term averages. 
  
5. CONCLUSIONS 
 
Among the models considered here, we found that the 
combination of the Perez radiation model, Sandia PV, 
Sandia thermal, and Sandia inverter models return the 
most accurate PV output estimation. The CEC model may 
be used if parameters for the Sandia PV model are not 
available. 
 
Bias correction using measured PV output resolved the 
underestimation of modeled PV output that was partially 
due to the mismatch between actual and nominal module 
capacities.  
 
Another apparent source of bias in the PV models was the 
underestimation of incident total radiation associated with 
cloudy days. This bias may be systematically important 
for PV modeling in the Southeastern US. This bias may 
be corrected by either reparameterizing radiation models 
or by statistical post-processing of predictions from other 
models. 
 
The usage of long-term satellite time series data was 
recommended to calculate historical hourly PV output and 
generate distributions of predicted PV output for PV 
siting decisions. TMY data may also be used for siting 
decisions, but the calculated PV output does not include 
variability in PV output and may be biased slightly high.  
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