ABSTRACT

Solar LiCl air dryer system has been investigated theoretically and experimentally. It consists of three parts: the main dryer part with liquid desiccant solution (LiCl) cycle, the solar heating system with sensible and latent heat stores, and the ground source.

The dryer system includes dehumidifier to decrease air humidity and the regeneration section that was designed to increase the concentration of LiCl solution. For the experiments, the supply heat energy in the heat storage tank was an electrical heater that provides the required energy similar to the solar heating system with PCM investigated by the author (1). Also, cold water was used for the experiments instead of the ground source for cooling the LiCl solution in the heat exchanger before entering the dehumidifier.

In this paper, the experimental results will be presented. The theory of the experimental setup with the solar heating system with PCM material and the ground source is investigated.

Keywords: Solar energy, Phase Change material (PCM) tank, Liquid desiccant solution (LiCl) Ground source.

1. INSTRUCTION

Air conditioning systems consume a considerable amount of energy. Renewable energy like solar energy would be a good choice to be used in the thermodynamic cycle. Crofoot and Harisson (2), Andrusiak, Harrison, (3) considered using solar air conditioning systems.

The main part of the whole cycle is the dryer part and also choosing the working fluid in the dryer cycle.

According to Liu et al. (4) finding, in the dehumidification process, LiCl compared to LiBr in the same condition (the same vapor pressure and inlet temperature, rather than the same crystal temperature) had a better mass transfer performance in the same desiccant mass flow rate condition. They reported that the COP of using LiCl and LiBr in the cycle is similar. Additionally, initial cost of LiCl solution price is 18% lower than LiBr.

Khan and Martinze (5) developed a simple model to predict the performance of liquid desiccant absorber. They showed that the simple model had a good agreement with the detailed model.

Phase Change Material tanks have been used extensively in various literature. Ismail (7) investigated a numerical model to simulate a latent storage tank composed of spherical capsules filled with PCM placed inside a cylindrical tank filled with a working fluid circulation system to charge and discharge energy in the heat storage tank. The influence of charging and discharging time of the PCM tank were investigated numerically and experimentally. Water Heating System was also improved with the use of Phase Change Materials (8-9).

Ground source can be used for cooling the working fluid temperature. Bernardi at el. (10) investigated that it is useful to improve a cycle and increasing COP of whole cycle by using ground source.
In the current paper LiCl dryer has been investigated experimentally and theoretically combined with solar heating system with PCM tank and also ground source cycle.

2. Experimental Investigation
 1. Governing equation
 1.1. Dehumidifier and Regeneration

According to Liu et al. (4) paper, the equivalent humidity ratio of liquid desiccant ω_e is illustrated with the equilibrium status of air, as shown in Eq. (1),

$$\omega_e = 0.622Ps_B - Ps$$

Eq. 1

Moisture removal rate in the mass transfer performance of the dehumidifier or regenerator is shown in Eq. (2).

$$m_w = ma \cdot \omega_{a, in} - \omega_{a, out}$$

Eq. (2)

Eq. (3) expresses the relation of moisture removal rate in the dehumidifier. Additionally, the regressed moisture removal rates using LiCl are shown in Eq. (4).

$$m_w = \epsilon m \cdot ma \cdot \omega_{a, in} - \omega_{e, in}$$

Eq. (3)

The higher mass transfer efficiency is brought the moisture removal rate as shown in Eq. (9).

$$m_w = \epsilon_m \cdot ma \cdot \omega_{a, in} - \omega_{e, in}$$

Eq. (9)

In the regeneration or dehumidifier, on the analytical solution of the heat and mass transfer procedure in packed-bed, the mass transfer efficiency ϵ_m at diverse flow patterns is the function of heat capacity ratio of air to desiccant m^* and mass transfer unit NTU, as shown in Eq. (6), Eq. (7) and Eq. (8) investigated in (4) and (11-12).

$$m^* = C_p.e \cdot maC_p,s \cdot ms = C_p.e \cdot \rho_a \cdot Vs$$

Eq. 7

where $C_p,e = \frac{dhedt}{Ts}$

$$NTU_m = hma = hma \cdot Vma$$

Eq. 8

The coefficient of performance of the liquid desiccant system is determined by the cooling capacity of the processed air Q_a divided by the regeneration heat supplied into the regenerator Q_{hot}.

$$\text{COP} = \frac{Q_a}{Q_{hot}} = ma \cdot (\frac{ha, in - ha, out}{C_p \cdot mwh, (twh, in - twh, out)})$$

Eq. 10

1.2. Solar thermal system

In the following equations, the solar collector efficiency and PCM tank efficiency are shown.

1) Solar collector: In the Eq. (13), solar collector efficiency is calculated where the solar collector heat transfer rate is calculated in Eq. (12).

$$Qu = m_ccwTic - Toc$$

Eq.(12)

$$n_c = QuAcGc$$

Eq. 13

2) PCM tank: For PCM tank efficiency shown in Eq. (16), PCM heat transfer rate (Eq. (14)) was divided by the maximum possible heat transfer rate that the PCM tank is able to save. In addition, data logger receives experimental data every 30 minutes. Therefore Eq. (15) needs to be divided by the period of 30 minutes in order to convert it to kW.
\[Q_s = m t c w T i t - T o t \]
Eq. 14

\[Q_p = m p c m c p m T p c m - T a \]
Eq. 15

\[\eta t = 30 \times 60 Q_s Q_p \]
Eq. 16

2.1.2 Ground source temperature estimation

According to previous research investigation (13), \(T_g \) is the undisturbed ground temperature expressed in °K. It can be calculated as:

\[T_g X_s , t = T_g - A s e x p - X_s \pi 365 \alpha \cos 2 \pi 365 t - 0 - X_s 2365 \pi \alpha - 321.8 + 273 \]
Eq. 17

where \(X_s , t , T_g , A_s , \alpha \) and \(t_o \) are the soil depth in feet, the day of year, average annual surface soil temperature, the annual surface temperature amplitude \((T_{max} - T_{min}) \), the soil thermal diffusivity \(^1\), and a phase constant expressed in days, respectively. Eqs. (18-19) are the minimum and maximum ground temperatures for any depth, respectively.

\[T_{g, min} = T_g - A_s \exp - X_s \pi 365 \alpha \]
Eq. 18

\[T_{g, max} = T_g + A_s \exp - X_s \pi 365 \alpha \]
Eq. 19

According to Kavanaugh et al. (14), for vertical ground source systems, \(X_s \) can be fixed equal to the average depth in Eq. (18) and Eq. (19). Temperature can be estimated approximately as equal to the mean annual surface soil temperature, \(T_g \).

\[^1\alpha = k / \rho C_p\]
where \(k \) is the thermal conductivity in BTU/hr lb °F, \(\rho \) is the density in lb/ft\(^3\) and \(C_p \) is the specific heat in BTU/lb °F.

For calculating ground heat exchanger length Eq. (20) in the Ground Source Heat Pump (GSHP) Project, Model of International Ground Source Heat Pump Association (IGSHPA) (13) is utilized as the method. The required Ground Heat Exchanger (GHX) length \(L_c \) establish on cooling necessity:

\[L_c = q_d \cdot c o o l C O P_c + 1 \cdot C O P_p + R_s F_c T_{ewt, max} - T_{g, max} \]
Eq. 20

Where \(COP_c \) is the design cooling coefficient of performance (COP) of the heat pump system, \(F_c \) is the part load factor for cooling, \(R_s \) is the soil thermal resistance, \(R_p \) is the pipe thermal resistance, \(T_{g, max} \), is the maximum undisturbed ground temperature, and \(T_{ewt, max} \) is the maximum design entering water temperature at the heat pump.

The method that the model used in the Natural Resources Canada (RETScreen) GSHP Project Model used to model the COP and the capacity as a function of the entering fluid temperature uses a quadratic polynomial correlation:

\[COP_{actual} = COP_{baseline} K_0 + K_1 T_{ewt} + K_2 T_{ewt}^2 \]
Eq. 21

\[K_0 = 1.53105836 \]
\[K_1 = -2.296095 \times 10^{-2} \]
\[K_2 = 6.8744000 \times 10^{-5} \]

Where \(COP_{actual} \) is the actual COP of the heat pump, \(COP_{baseline} \) is the nominal COP of the heat pump (e.g. measured at standard rating conditions, 0°C for heating and 25°C for cooling), \(k \), are correlation coefficients listed and \(Q_c \) is the capacity of the heat pump for cooling or heating.

The maximum and minimum design temperature of entering water are pinted out in Eqs. (22, 23):

\[T_{ewt, min} = T_{g, min} - 150F - 321.8 \]
Eq. 22

\[T_{ewt, max} = \min (T_{g, max} + 200F , 1100F) - 32/1.8 \]
Eq. 23
Because the model was also designed to be used in permafrost, the 20°F minimum entering water temperature limitation was not implemented.

The part load factor (F) is calculated by divided the full load hours during the design month by the total number of hours in that month, as seen by the GHX Eq. (24). It can be evaluated as:

\[F = \frac{q_{\text{max}}}{24} \quad \text{Eq. 24} \]

Where \(q_{\text{max}} \) and \(q \) are the peak load for the month and the average load respectively.

3. **Method**

In the dryer cycle, LiCl as the working fluid circulated in the dehumidifier to absorb air humidity. To have LiCl with high concentration, regeneration part is designed in the dryer cycle. Heat resource is provided by electrical heater. Later, instead of the electric heater, solar collectors and PCM tank were used theoretically. Fig. 1 shows a schematic diagram of the LiCl dryer with solar heating system which consists of 3 parts:

1. **Solar collector and heat storage tank:**

 During the day, the solar collectors are exposed to the solar radiation and thus produce hot water. Hot water is divided between the heat storage tank (HST) and PCM tank (Fig. 2). Heat storage tank is a heat exchanger that transfers the heat energy from solar collectors to dryer cycle. Additionally, dryer cycle does not need constant heat energy because sometimes the percentage of concentration of the solution is enough not to regenerate.

 During day, solar collectors produce heat energy in the PCM tank and can be discharged during night in dryer cycle when it is demanded. Additionally, thermo physical properties of the PCM are shown in TABLE 1.

 TABLE 1: THERMO PHYSICAL PROPERTIES OF THE PCM (PARAFFIN).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>55-59°C</td>
</tr>
<tr>
<td>Heat storage capacity</td>
<td>178 (KJ/kg)</td>
</tr>
<tr>
<td>Solid Density</td>
<td>900 (m^3/kg)</td>
</tr>
<tr>
<td>Liquid Density</td>
<td>770 (m^3/kg)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>2 (W/m.K)</td>
</tr>
</tbody>
</table>

4. **Drying system with LiCl working fluid:**

5. Whole dryer system is shown in Fig. 3. where in the dehumidifier part, LiCl solution splashes on the cellulose pad and a fan blows ambient air on the cellulose pad guided by the duct channel. Therefore, dried air leaves the pad outlet to be used in air conditioning system. In the regeneration part, Heat Storage Tank (HST tank) is applied between the solar collector and regeneration part of the dryer cycle. It should be mentioned that when LiCl concentration decreases, valves number 12, 19 will be closed and valves 13, 18 are opened to regenerate in the regeneration).

 The hot LiCl solution (valve 13) enters the cellulose pad and splashes on it by the Pump to create high LiCl concentration. When the system has enough LiCl concentration, valves 12 and 19 are opened and valves 13 and 18 are closed until the LiCl concentration becomes low. The LiCl concentration is controlled manually by measuring the LiCl and opening and closing the valves.

6. **Whole dryer system is shown in Fig. 3.**

7. **Drying system with LiCl working fluid:**

8. **Whole dryer system is shown in Fig. 3.**

9. **Whole dryer system is shown in Fig. 3.**

10. Fig. 2: HST and PCM tank.
12. Fig. 3: Dryer system with Liquid desiccant LiCl.

13. Num
14. ber
15. Name
16. Number
17. Collector
18. Valve
19. Fan
20. Air Channel
21. Ground Source
52. Fig. 1: Whole solar dryer cycle with use of ground source.

55. TABLE 2: LICL PROPERTIES.

<table>
<thead>
<tr>
<th>59.</th>
<th>60.7</th>
<th>61.3</th>
<th>62.</th>
<th>63.</th>
<th>64. Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>65.1</td>
<td>66.0</td>
<td>67.1</td>
<td>68.</td>
<td>69.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>2</td>
<td>126</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.1</td>
<td>72.1</td>
<td>73.2</td>
<td>74.</td>
<td>75.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2.8</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.1</td>
<td>78.2</td>
<td>79.3</td>
<td>80.</td>
<td>81.</td>
<td>10.006×10^5</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2.5×10^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>1</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>Viscosity (Pa.Sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Geo source for cooling LiCl solution.

If LiCl liquid desiccant temperature decreases, it can absorb much more humidity, therefore, ground source system which has water as a working fluid is used. It can be used in the heat exchanger B in the dryer cycle. The dryer system would be effective because it does not need to have cooling tower in the cycle especially when the cycle is in the humid climate. Finally, LiCl solution with high concentration comes back in dehumidifier part after heat exchanger B outlet and it can absorb the air humidity.

Humidity, temperature and air velocity in LiCl dryer are measured by SAMWON model SU-50313, model TESLINK RS-232 and Model Smart Sensor AR846 respectively.

The solar thermal system had different setup located in a different location. Solar system was set up in the latitude of 35.39, longitude of 53.2 and altitude of 1127.29m. In this experimental work, solar radiation is measured using Kipp & Zonen pyranometer. The data logger has LM35 temperature sensors with the temperature accuracy of ±0.1°C.

The desired air mass flow rate assumed to be 0.54 kg/s and according to Eqs. (3) and (4), the LiCl
solution flow rate in the dryer cycle is calculated to be 0.23 kg/s depending on the moisture removal and also moisture content created by dryer the cycle. The parameters measured in this experiment are inlet and outlet temperature, humidity and flow rates both in the air side, water side and LiCl solution side. Table 3 shows the measured data. The result shows that the ambient air humidity can be decreased well from 66% and temperature of 32°C down to 30% of humidity with 35°C of the delivered air. There is no significant change in the air temperature.

116.

117. **TABLE 3. DATA OF Whole LiCl DRYER AT SAME TIME**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient air temperature</td>
<td>32°C</td>
</tr>
<tr>
<td>Ambient air humidity</td>
<td>66%</td>
</tr>
<tr>
<td>Outlet air temperature in dehumidifier</td>
<td>32°C</td>
</tr>
<tr>
<td>Outlet air humidity in dehumidifier</td>
<td>30%</td>
</tr>
<tr>
<td>Humidity air</td>
<td>66%</td>
</tr>
<tr>
<td>Flow of inside air the humidifier and</td>
<td>0.5</td>
</tr>
<tr>
<td>Regeneration part</td>
<td></td>
</tr>
<tr>
<td>Outlet humidity air in regeneration</td>
<td>80%</td>
</tr>
<tr>
<td>Outlet temperature air in regeneration</td>
<td>35°C</td>
</tr>
<tr>
<td>LiCl solution flow</td>
<td>0.2</td>
</tr>
<tr>
<td>Inlet water heat exchanger B (T_b)</td>
<td>18°C</td>
</tr>
<tr>
<td>Outlet water heat exchanger B (T_a)</td>
<td>29°C</td>
</tr>
<tr>
<td>Water in heat exchanger B</td>
<td>0.1</td>
</tr>
<tr>
<td>Inlet LiCl solution heat exchanger B (T_c)</td>
<td>50°C</td>
</tr>
<tr>
<td>Outlet LiCl solution heat exchanger B (T_d)</td>
<td>41°C</td>
</tr>
<tr>
<td>Inlet Licl heat storage tank (T_f)</td>
<td>40°C</td>
</tr>
<tr>
<td>Outlet Licl heat storage tank (T_g)</td>
<td>52°</td>
</tr>
<tr>
<td>Average water temperature inside heat storage tank</td>
<td>58°</td>
</tr>
</tbody>
</table>

118. According to Table 3, the measured heat storage tank temperature with water was measured to be 58°C. The current heat storage tank had an electric heater. However, solar thermal system can be used to provide the required temperature. Auxiliary supply system with electric heater can still be connected to the system.
However, less energy can be used to heat up and keep the heat storage tank constant. Therefore, solar thermal system with PCM material is introduced to the system. According to Fig. 5, solar radiation, inlet and outlet temperature of solar collector are shown in a specific sunny day.

The inlet and outlet solar collector temperatures are changed with delay because of absorbing energy by PCM tank material that releases the heat smoothly to the water tank heat store in order to stabilize the temperature.

Fig. 5: Inlet and outlet temperatures from the solar collector (to the left), solar radiation (to the right).

The minimum temperature for heat exchanger B inlet temperature in the LiCl dryer cycle is 18°C. Fig. 7 illustrates typical soil temperature variation reported by Kavanaugh and Rafferty (14). If the depth of the hole is higher, the soil temperature will decrease and finally become constant at 6°C. Therefore, ground source can be used in the heat exchanger B side in order to provide temperature less than 18°C. Ground source can be used especially in the humid climate where instead of the cooling tower, ground source can be used.

Dryer system with LiCl solution as a working fluid can was investigated experimentally. The system showed that the dry ambient air with 0.54 kg/s from 66% to 30%.

The experimental investigation was carried out to test the PCM tank heat storage and water heat storage tank in order to use it for regeneration of the LiCl solution. The PCM tank can store solar energy during the day and can deliver heat to the water heat storage tank for longer time during the night, especially when the regeneration part is used in the dryer cycle during evening and night.

In humid climate, it is difficult to benefit from cooling tower in the dryer cycle. Therefore ground source can be used in the dehumidification process.
Mass Transfer Area

- **Nominal**
 - Mass transfer area, m^2

Specific Heat

- **PCM**
 - Specific heat, kJ/(kg·°k)

Packing Area

- **specific area of the packing per volume, m²/m³**

Melting Temperature

- **PCM**
 - Melting temperature, °C

Heat Capacity Ratio

- **Air**
 - Heat capacity ratio of air to desiccant, dimensionless

Melt Temperature PCM

- **PCM**
 - Melt temperature PCM, °C

Heat Transfer Efficiency

- **Mass**
 - Mass transfer efficiency, %

Moisture Removal Rate

- **Air**
 - Moisture removal rate, kg/s

Ground Heat Exchanger Length

- **Heat pump system**
 - Ground heat exchanger length, m

Heat Capacity Ratio

- **Air to desiccant**
 - Heat capacity ratio of air to desiccant, dimensionless

Cooling Capacity

- **Heat pump system**
 - Design cooling capacity or heating capacity, kw

Heat Pump System

- **Design**
 - Design cooling coefficient of performance (COP)

Mass Transfer Efficiency

- **Material**
 - Mass transfer efficiency, %

Volume of the Packed-Bed Module

- **M**
 - Volume of the packed-bed module, m³

Maximum Temperature

- **Ground**
 - Maximum temperature, °C

Mass Flow Rate

- **Air**
 - Mass flow rate, kg/s

Ground Resale

- **Soil**
 - Soil thermal diffusivity, m²/s

Moisture Removal Rate

- **Air**
 - Moisture removal rate, kg/s

Design Cooling Coefficient

- **Heat pump system**
 - Design cooling coefficient of performance (COP)

Heat Transfer Efficiency

- **Material**
 - Mass transfer efficiency, %

Design Entering Water Temperature

- **Heat pump system**
 - Maximum design entering water temperature at the heat pump, °C

Actual COP

- **Heat pump system**
 - Actual COP
of liquid desiccant (solute/solution), %

265. \(\rho \) 266. D 267. C
Density, kg/m³

268. \(\text{OP}_{\text{baseline}} \)

269. \(Q \) 270. C 271. T
Collector Heat transfer rate, W

272. \(u \) 273. 274. m

275. 276. 277. 278. T
Collector mass flow rate of water, kg/s

279. 280. T
Minimum design entering water temperature, °C

281. 282. C 283. F
Collector Inlet temperature, k

284. 285. T 286. C 287. q
Collector Outlet temperature, k

288. q
Maximum load factor for the month

289. \(\eta \) 290. C 291. q
Collector Efficiency

292. q
Average load

293. A
Collector Area, m²

294. G 295. S 296. A
Solar radiation, W/m²

297. H
Humid air

298. I

299. Q 300. P 301. I
CM Storage tank Heat transfer rate, W

302. L

303. m 304. M 305. o
Ass Flow rate ut PCM tank, kg

306. O

307. T 308. P 309. S
CM tank inlet temperature, k

310. L

311. T 312. P 313. W
CM tank Outlet temperature, k

314. H

315. Q 316. M 317. \(\omega \)
PCM ax Heat Storage tank, J/°C

318. h

319. m 320. P 321. S
PCM CM mass, Kg

322.

8. References

324. ______

328. (4) X.H. Liu, X. Q. Yi, Y. Jiang, mass transfer performance comparison of tow commonly used liquid desiccants: LiCl and LiBr aqueous solution:

