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ABSTRACT 
 
This study evaluates the effect of city-level permitting 
processes on the installed price and development time of 
residential photovoltaic (PV) systems. Using a unique 
dataset from the U.S. DOE’s Rooftop Solar Challenge 
Program, which includes city-level permitting process 
“scores,” econometric methods are employed to quantify 
the effects of city-level permitting processes across 44 
California cities in 2011. Results suggest that: (1) the 
most favourable (i.e., highest scoring) permitting 
practices can reduce average residential PV prices by 
$0.27–$0.41/W compared with the most taxing (i.e., 
lowest scoring) permitting practices, depending on the 
regression model used; (2) the most streamlined 
permitting practices may shorten development times by 
around 24 days, though this empirical model is less 
robust. These findings illustrate the potential price and 
development-time benefits of streamlining local 
permitting procedures for PV systems.  
 
 
1. INTRODUCTION 
 
The installed price of photovoltaic (PV) systems has 
declined dramatically, driven primarily by the reduction 
in the price of PV modules (Barbose et al., 2012; Bazilian 
et al., 2013). In part as a result, non-hardware business 
process (or “soft”) costs currently account for well over 
50% of the installed price of residential PV systems in the 
United States,1 and understanding these costs is crucial 
for identifying further PV cost-reduction opportunities.  

                                                       !
1 Ardani, et al. (2012) and Goodrich, et al. (2012) report non-
hardware costs at roughly 50% of the total price of a typical 
residential PV system in the U.S. in 2010.  With current PV 
module prices well below what was observed in 2010, non-
hardware costs now constitute more than 60% of typical 
installation prices in the United States.  

 
This study builds on the available literature by focusing 
squarely on understanding one component of non-
hardware PV costs: the effect of city-level permitting 
processes in the U.S. on the installed price of residential 
PV systems and on the time required to develop and 
install those systems. Local, city-level permitting 
processes are one core driver of business process costs, 
and potentially add considerable expense and 
development-time to PV installations. A typical PV 
permitting process in the United States involves many 
local government departmental reviews, such as building, 
electrical, mechanical, plumbing, fire, structural, and 
zoning reviews, as well as a permitting fee. In addition, 
site inspection and final approvals are required for 
permitting and interconnection.  
 
The diversity of PV permitting documentation 
requirements, application procedures, inspection 
processes, and fees used by local jurisdictions complicates 
the business of PV installers that seek to market systems 
in multiple jurisdictions. Clean Power Finance surveyed 
273 installers across 12 states, and found that more than 
one-third of installers avoid jurisdictions with particularly 
challenging permitting processes, and that average 
permitting process times are almost eight weeks in 
duration (Tong, 2012); earlier, Sunrun (2011) reported PV 
installation delays that averaged three-and-a-half weeks as 
a result of permitting procedures.  
 
Several approaches have been used to estimate the cost 
impacts of local permitting processes for PV installations. 
The Sierra Club’s California Solar Permit Fee Campaign 
collected data to compare permit fees and time 
requirements across California cities (Mills et. al, 2009; 
Mills and Newick, 2011). Building on that, Vote Solar 
created a Solar Permit Map, with additional city-level 
permitting data contributed by users (Vote Solar, 2013). 
In a National Renewable Energy Laboratory survey of 
U.S. PV installers, residential PV permitting, inspection, 
and interconnection (PII) labor costs averaged $0.13/W; 
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an assumed average permitting fee added $0.09/W 
(Ardani et al., 2012). Lawrence Berkeley National 
Laboratory (LBNL) showed that PII costs in Germany 
averaged only about $0.03/W, almost $0.20/W lower than 
U.S. costs, owing to Germany’s uniform and simplified 
regulatory structure (Seel et al., 2013).2  Earlier, Sunrun 
(2011) estimated that local permitting and inspection 
could cost $0.5/W in total for a typical residential 
installation in the U.S., or $0.28/W if excluding the 
impact of permitting on sales and marketing costs as well 
as variations in building requirements. Only considering 
the labor costs of permitting (and excluding the permit 
fee), Clean Power Finance’s recent survey of PV 
installers yields an average estimate of roughly $0.11/W 
(Tong, 2012). 
 
Responding to the above challenges, many efforts are 
underway in the U.S. to streamline and bring down the 
cost of local permitting processes, including DOE’s 
Rooftop Solar Challenge Program, SolarTech’s Solar3.0, 
the Solar America Board for Codes and Standards 
(Brooks, 2012), and Clean Power Finance’s National 
Solar Permitting Database. States such as California, and 
the organizations such as the Interstate Renewable Energy 
Council (IREC), have also initiated efforts to expedite 
permitting and field inspections (OPR, 2012; IREC, 
2010). Stanfield et al. (2012) describe the diversity of 
approaches that can and have been used to streamline and 
lower the cost of local permitting requirements for PV 
installations. 
 
This study builds on the previous work by examining a 
unique set of detailed permitting data from the U.S. 
DOE’s Rooftop Solar Challenge Program, which includes 
city-level permitting process “scores.” It addresses two 
specific research questions. First, how does the permitting 
process at the city level affect residential PV installation 
prices?  Second, how does the permitting process 
determine the time needed to develop a residential PV 
system? Econometric methods are used to quantify the 
price and development-time effects of city-level 
permitting processes on more than 3,000 PV installations 
across 44 California cities in 2011. This research 
complements the bottom-up approaches used in previous 
studies by focusing not on average impacts but rather on 
the range of impacts observed across cities. The results 
can further inform efforts to streamline residential PV 
permitting processes.  

 
 

2. DATA 

                                                       !
2 Langen (2010), meanwhile, estimated PII costs of $0.8/W for 
the U.S. and $0.4/W for Germany. 

Comprehensive and comparable data on the residential 
PV permitting and inspection process in a multitude of 
jurisdictions are scarce, and previous work has focused 
primarily on compiling information on local permitting 
practices and fees, and on assessing the average labor 
costs associated with PII. Below we discuss the 
permitting dataset used in the present study, as well as the 
other data used to conduct our empirical analysis.   

 
2.1 Permitting Process Data 

 
The principal data source for this study is a unique dataset 
from DOE’s Rooftop Solar Challenge Program.3 Through 
this program, DOE surveyed more than 290 participating 
jurisdictions nationwide in 2011 and allocated 
quantitative permitting scores based on a detailed 
questionnaire and a weighting methodology. The 
questionnaire contained 21 questions related to seven 
categories of the city permitting process, including 
application, information access, process time, fees, model 
process, inspection, and communication with the utility.  
 
Our final dataset contains residential permitting scores for 
44 cities in California, ranging from 71 to 223. The state’s 
largest cities—including Los Angeles, San Diego, San 
Jose, and San Francisco—are included in the sample, and 
the density of cities included is highest in the Bay Area. 
These cities represent approximately 27% of California’s 
total population.  
 
2.2 PV Prices, Development Times and Other Data 
 
California Solar Initiative (CSI) information constituted 
the second key data source. These data cover all 
California PV systems that received a CSI financial 
incentive and include pre-incentive system installation 
price, system size, utility area, city, various dates in the 
installation process, and whether the system is third-party 
owned (TPO). We use these data to calculate two 
dependent variables for each system: pre-incentive 
installed prices ($/W) and development times (# days), 
the latter of which approximates the length of time the 
customer/installer spent completing development tasks for 
a system. 
 
Also used in the analysis are city-level variables—such as 
median household income, median household value, 
education level, population density, and median number 
of rooms per household—from the U.S. Census Bureau 

                                                       !
3 We investigated other possible PV permitting data sources, 
including from Vote Solar, the Sierra Club, and Clean Power 
Finance. None of these sources enabled the ready creation of a 
comprehensive, comparable, current, geographically broad, 
quantitative permitting “score.” 
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(2012). In addition, we use average electrician wage data 
from Salary.com, which estimates career-specific wages 
by city. These independent variables are used to control 
for confounding factors that could affect the relationship 
between permitting process scores and PV installation 
prices or development times.  
 
2.3 Summary Statistics 
 
The final dataset used for the analysis includes 3,277 
residential PV systems installed in 2011 in the 44 
California cities for which we have residential permitting 
process scores from the U.S. DOE (these PV systems 
represent 16% of 2011 systems reported in the CSI 
database). Only systems smaller than 10 kW are included.  
 
We excluded from our analysis—where possible—
appraised-value third-party-owned (TPO) PV systems 
because the prices reported for such systems are not 
actual transaction prices as paid by a customer for a 
specific PV system but rather are based on an average 
estimated “value” of a collection of PV systems. Barbose 
et al. (2012) provide more information on why it is 
important to exclude certain TPO systems from PV price 
analyses. 
 
The variable names, definitions, and descriptive statistics 
used in the regression analysis are summarized in Table 1. 
Most of these are self-explanatory. System-level 
installation prices are measured in nominal 2011 U.S. 
dollars. The mean price of the full sample is about 
$6.60/W (compared with $6.70/W for the California-wide 
mean residential price for systems installed in 2011 
(Barbose et al., 2012)). The development time variable is 
converted to logarithmic form, to better approximate a 
normal distribution. The residential permitting scores are 
downscaled by 100, to be more compatible with the scale 
of the dependent variables. We centered the system size 
variable (csize) by subtracting the sample mean from the 
actual size. This method is used to reduce collinearity 
when including both the square term of a variable and the 
variable itself. 
 
We calculate three additional variables using the raw data. 
The variable Month_perstart denotes a continuous month 
number representing when the customer/installer initiated 
system development, intending to capture observed lower 
system pricing over time. The variable Installationdensity 
represents the total number of residential PV systems 
installed per unit of city area from 2007 to 2011, which 
may capture potential local learning effects. The variable 
Weekcount indicates the total number of PV systems 
entering the CSI incentive program (and therefore 
development pipeline) every week for each utility service 

area, in order to capture the potential congestion effect 
during the incentive application and permitting process. 
 
 
3. REGRESSION MODELS AND FACTOR 

ANALYSIS 
 
The regression analyses presented in the next section 
include various combinations of the dependent and 
independent variables discussed previously, in an attempt 
to minimize omitted variable bias while also only 
including variables for which clear hypotheses could be 
formed. Possible additional variables were considered 
(such as age groups and races) as were variable 
combinations. We chose the final variables and 
regressions based on hypotheses for variable impacts, 
statistical significance, and model parsimony.  
 
We estimate two core sets of regressions: one for PV 
installation prices, and one for development times. The 
general regression model is as follows:   

where i  denotes a solar system, j  is a city ID, !  
represents the typical regression coefficients including the 
constant term, and !  captures the idiosyncratic error. 
The key regressor is the residential permitting score. 
About half of the control variables vary with systems ( X
) including system sizes, utility area dummies, and system 
development starting time; the other half of the control 
variables ( Z ) only vary with cities, such as city level 
electrician wages, median household incomes, installation 
density, and education variables. Because different cities 
have very different numbers of systems in the sample, we 
weighted each system using the inverse of system counts 
for its city to ensure every city is considered equally, 
similar to the way the permitting scores were assigned. 
 
The key hypothesis is straightforward: after controlling 
for all other variables, more favourable permitting 
processes for PV systems (i.e., cities with higher 
permitting scores) will yield reduced installation prices 
and shortened development times. Thus, we expect !1  to 
be negative. Other hypotheses—such as economies of 
scale, technology advancement over time, and local 
learning—are discussed in the results below.  
 
 

Yij = !0 + !1 ! res_ permitting j + !2Xij + !3Z j + " ij
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TABLE 1: VARIABLE DEFINITIONS AND SUMMARY STATISTICS FOR FULL SAMPLE OF 3,277 PV SYSTEMS 
 

 
 
Before presenting the results, one additional control 
variable, “cost of living,” must be explained further. We 
use this composite variable in a subset of the regressions 
that follow because we found that many individual control 
variables—such as median household income, median 
household value, electrician wage, population density and 
median number of rooms—overlap, at least to some 
degree, and all may relate to the cost of living in a city. 
We use principle component analysis (PCA) to extract 
this common factor out of these relevant individual 
variables, which contains 73.9% of the variance within 
these variables. 
 
 

3. RESULTS 
 
This section presents estimates for the price regressions 
first and then for the development time regressions. 
 
3.1. Price Regressions 
 
Table 2 presents results from the price-based analysis 
under five different regression models. Table 1, earlier, 
shows the definitions of the independent variables used in 
these models. Model P1 is the simplest form, including 
only a basic set of variables and very few controls. P2 
adds the “cost of living” factor, and P3 adds the variables 
of installation density and education. P4 and P5 are the 
same as P2 and P3, respectively, but with three major 

Variable Name Definition Mean Std. 
Dev. Min Max Unit 

priceperwatt System level total installation price (pre-incentives) per watt 
(direct current, standard test conditions) 6.62 1.46 2.37 13.84 nominal $ / 

W 

develop_time 
Approximate number of days the customer/installer spent 
completing development tasks for a system (from incentive 
application to installation), logarithm form 

4.57 0.78 0 6.45 log(days) 

res_permitting Permitting score for residential sector 1.52 0.35 0.71 2.23 # / 100 

csize System size centered  0.00 2.11 -3.48 5.37 kW 

csize2 Square term of system size centered 4.46 5.44 0.00 28.87 kW2 

PG&E Indicator for systems located in the Pacific Gas and Electric 
(PG&E) service area 0.66 0.48 0 1 0 or 1 

CCSE Indicator for systems located in the California Center for 
Sustainable Energy (CCSE, San Diego) area 0.20 0.40 0 1 0 or 1 

SCE Indicator for systems located in the Southern California 
Edison (SCE) area 0.14 0.35 0 1 0 or 1 

month_perstart 
Continuous month number when the customer/installer 
initiated development tasks for a particular system (i.e., 
applied for CSI incentives) 

26.24 5.24 7 36 integer value 

electrician Average electrician wage for each city 54.66 2.70 50.52 60.25 nominal $ / 
1,000 

medHHincome Median household income for each city 61.0 12.8 26.7 120.3 nominal $ / 
1,000 

medHHvalue Median household value for each city 48.36 17.27 16.14 98.55 nominal $ / 
104 

popdensity Population density for each city 5.90 4.34 1.38 16.84 # / Mile2 / 
100 

roomnumber Median number of rooms per household for each city 4.98 0.56 3.4 6.6 decimal 
value 

installationdensity Total number of residential PV systems installed per city per 
unit of area from 2007 to 2011 0.22 0.35 0.00 1.91 # / Mile2 / 

100 

weekcount 
Number of PV systems entering the development pipeline in 
a week from 2007 to 2011 for each utility (i.e., applied for 
CSI incentives) 

4.09 4.21 0.1 27.8 integer value 
/ 10 

college % of population in city that has any college education (but 
has not earned a bachelor’s degree) 29.84 6.16 12.6 39.6 % 

bachelor % of population in city that has earned a bachelors degree 34.27 13.39 1.3 68.9 % 
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individual “cost of living” variables included instead of 
the common factor.  
 
Based on the results for the two system size terms, PV 
systems exhibit strong economies of scale and 
diminishing returns of scale; both of which are significant 
at the 99% confidence level. The interpretation of the 
coefficients must consider both terms (csize and csize2). 
Taking model P5 as an example, a 1-kW increase in 
system size from the mean value decreases the installed 
price by about $0.28/W ($0.349/W minus $0.069/W), all 
else being equal. However, a 2-kW increase in size 
decreases the installed price by about $0.42/W, making 
the price reduction due to the second kW increase only 
$0.14/W.  
 
The coefficients for residential permitting scores are 
negative in most models, except for P1, which did not 
control for the “cost of living” factor or the corresponding 
individual variables. Because model P1 lacks 
critical control variables, it suffers from omitted 
variable bias, and is presented here only as a 
comparison point. For models P2 through P5, the 
coefficients move around –$0.20/W. This implies 
that, with all else being equal, improving the 
permitting process by 100 points (using the DOE 
scale) would lower the average installation price 
by around $0.20/W. This effect is statistically 
significant at the 95% confidence level or more. 
 
As for other control variables, after controlling 
for other factors, PV systems in the sample that 
are located in the Southern California Edison 
(SCE) service area show higher installation prices 
than systems in the Pacific Gas and Electric 
(PG&E) and California Center for Sustainable 
Energy (CCSE) areas. The coefficients of 
month_perstart indicate that system-level 
installation prices have been declining over time.  
 
“Cost of living,” captured by either the common 
factor or the separate variables, has a 
significantly positive impact on installation 
prices, which is consistent with the expectation 
that cities with a high cost of living generally 
would have high installation prices. Taking 
model P3 as an example, after controlling for 
other variables, higher “cost of living” cities are 
found to have average installation prices that are 
about $0.40/W higher than other cities. The 
individual-variable “cost of living” results are 
self-explanatory, with higher city-level 
electrician labor costs and median household 
incomes yielding higher-priced PV systems, on 
average. The roomnumber variable is negatively 

correlated with the extracted “cost of living” factor, so the 
negative coefficients for this variable in models P4 and P5 
are expected. 
 
The coefficients of installationdensity are not statistically 
different from zero in models P3 and P5, meaning that 
local learning experience was not significant or prevalent 
across these 44 cities in 2011, at least as defined by this 
single variable. This does not mean that local learning 
never occurs, however, as this variable is a relatively 
crude measure for such learning: further exploration of 
learning effects is warranted. On the other hand, the city-
level education variables are generally negative, with the 
variable bachelor exhibiting a stronger price-decreasing 
effect than the variable college.  
 
Based on the regression results above, we can predict 
installed prices for each system. We can then average the 
predictions from the system level to the city level. We use 

TABLE 2: REGRESSION OUTPUTS OF INSTALLATION PRICE 
 
Installation Price: 
$/W P1 P2 P3 P4 P5 

csize -0.394*** -0.349*** -0.347*** -0.349*** -0.349*** 

 
(0.016) (0.019) (0.019) (0.019) (0.019) 

csize2 0.079*** 0.068*** 0.068*** 0.069*** 0.069*** 

 
(0.006) (0.006) (0.006) (0.006) (0.006) 

res_permitting 0.281*** -0.176** -0.212*** -0.268*** -0.185* 

 
(0.075) (0.073) (0.079) (0.090) (0.100) 

PG&E -0.462*** -0.626*** -0.566*** -0.671*** -0.564*** 

 
(0.089) (0.087) (0.089) (0.087) (0.094) 

CCSE -0.467*** -0.449*** -0.302*** -0.395*** -0.366*** 

 
(0.103) (0.104) (0.111) (0.124) (0.124) 

month_perstart -0.017*** -0.012** -0.012** -0.012** -0.012** 

 
(0.005) (0.005) (0.005) (0.005) (0.005) 

factor_costofliving 
 

0.270*** 0.383*** 
  

  
(0.035) (0.061) 

  electrician 
   

0.071*** 0.046* 

    
(0.022) (0.024) 

medHHincome 
   

0.006* 0.015*** 

    
(0.003) (0.005) 

roomnumber 
   

-0.169** -0.295**  

    
(0.085) (0.127) 

installationdensity 
  

-0.036 
 

0.041 

   
(0.068) 

 
(0.080) 

college 
  

0.004 
 

-0.008 

   
(0.006) 

 
(0.007) 

bachelor 
  

-0.009*** 
 

-0.010** 

   
(0.003) 

 
(0.004) 

N 3,277 3,277 3,277 3,277 3,277 
r2_a 0.328 0.343 0.343 0.342 0.342 
df_m 6 7 10 9 12 
Robust standard errors in parenthesis; *p < 0.10, **p < 0.05, ***p < 0.01.  
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models P2–P5 to display the marginal effects of 
permitting across model sensitivities. Fig. 1 does this by 
calculating predicted installed prices using the 
coefficients of permitting scores from models P2–P5, 
while using mean values for all other model variables. 
The city with the lowest permitting score is depicted on 
the left side of the chart as the baseline, and every other 
city has a predicted average installed price determined by 
how it outperforms the baseline city in terms of 
permitting score and the coefficient of permitting scores 
in each model. 
 
In Fig. 1, the 44 cities are listed in ascending order in 
terms of permitting scores. Therefore, the predicted 
installation prices decrease from left to right. Each curve 
represents the prediction results using one regression 
model. The curves are nonlinear because the permitting 
score steps between two cities are not necessarily equal.  
 

 
 
Fig. 1: Predicted prices using permitting scores, all else 
being equal. 
 
Across these four models, permitting processes are found 
to cause differences in average PV installed prices among 
cities of up to $0.27–$0.41/W, depending on the model 
chosen.4 It is not clear which of the four models better 
captures the real effect size. Regardless, across all models, 
this represents 4%–6% of median PV prices in California, 
and indicates that different permitting procedures can 
have a meaningful impact on relative PV prices among 
cities. The magnitude of these price differences across 
cities can be compared with studies that quantify absolute 
average permitting costs at the national level (e.g., Ardani 
et al., 2012 found a national average price impact of  
$0.22/W for PII, as reported earlier), demonstrating that 

                                                       !
4 The core analysis presented in this paper excluded appraised-
value TPO systems from the data-set, but included other TPO 
systems. We also ran similar models with all TPO systems 
excluded from the data-set, and in that instance found larger 
price differences among cities of up to $0.43–$0.77/W. 

estimated national average impacts mask more-substantial 
impacts that can occur at a local level. 
 
3.2. Development Time Regressions 
 
Table 3 presents the results of the development-time 
analysis. Model specifications for development times are 
slightly different than those for installation prices. First, 
only the level term of system size is used. Second, we 
remove the month_perstart variable since we need not 
control for the same time-influenced price-reduction 
effect as in the price regression. Third, we add one control 
variable—weekcount—to account for the possibility that 
more systems in the incentive application and permitting 
queue could slow down the whole process.  
 
As before, Model T1 is a reference. Focusing on models 
T2-T5, the centered size (csize) variable has a positive 
sign, suggesting that larger PV systems require slightly 
more development time, but the coefficient is not 
statistically significant at the 90% level.  
 
The permitting score coefficients in models T2–T5 are all 
negative and statistically significant, which is consistent 
with expectations. However, the magnitudes of the effect 
in models T2 and T3 are greater than in the other two 
models. One possible explanation is that, because the 
effects of the individual “cost of living” variables on 
development time could push the results in opposite 
directions (e.g., medHHincome and popdensity in TABLE 
3), combining them (as in models T2 and T3) might not 
be appropriate. Focusing on models T4 and T5, improving 
the permitting process by 100 points could, all else being 
equal, speed development times by roughly 10%. 
 
The average development times for installations in PG&E 
and CCSE areas depend in part on whether weekcount is 
controlled for. After considering this congestion factor, 
results seem to suggest that systems in the PG&E area 
move through the development process more rapidly than 
in SCE’s service territory, while results for CCSE are less 
clear. 
 
It is difficult to interpret the implication of using the “cost 
of living” factor in T2 and T3, but the individual variables 
included in models T4 and T5 have plausible (if untested) 
explanations. The negative coefficient of MedHHincome 
suggests that areas with higher income levels tend to have 
lower development times. Two possible explanations are 
that higher-income earners may place higher value in 
speeding the development process, or may be willing and 
able to pay to speed that process. High popdensity, on the 
other hand, is found to slow the development process, 
possibly because denser neighborhoods might present 
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additional PV-installation challenges in terms of 
neighbor complaints.  
 
Weekcount seems to have a significantly positive 
impact on development times, meaning that congestion 
causes delays in the installation process. As to the last 
three variables, models T3 and T5 find divergent 
results. Because T5 has a higher R2 value and 
medHHincome may have already captured the effect of 
high education levels, we tend to place more trust in T5, 
which finds no evidence of effects due to education 
levels or installation density.  
 
Overall, while models T2-T5 find that challenging 
permitting practices lead to lengthier PV development 
times, the statistical robustness of this result is not as 
persuasive as in the price-based regressions. First, the 
coefficient for the permitting variable is less stable to 
the alternative model specifications shown. Second, 
some of the control variables are found to have effects 
that are less intuitively persuasive than in the price 
regressions. Third, while the overall explanatory power 
of both the price and development-time regressions is 
relative low (see the R2), this is especially true in the 
case of development time. 
 
We predict development times in a similar way as 
installed prices, earlier. Fig. 2 highlights the marginal 
contributions from the permitting process. We only use 
models T4 and T5 to compare the marginal differences. 
We do not use T2 and T3 because interpretation of the 
“cost of living” factor is challenging, and we place 
more trust in alternative model forms. The marginal 
effects of the permitting process in models T4 and T5 are 
very close to each other (Fig. 2), masking the general 
instability of the coefficient for the permitting variable to 
alternative model specifications, as discussed earlier. 
Regardless, based on these two models alone, different 
permitting processes (as approximated by permitting 
scores) are found to cause average development time 
differences among cities of up to about 24 days, or 25% 
of the median development time.  
 
 
4. CONCLUSIONS 
 
In conclusion, city-level permitting processes – as one 
core driver of business process costs – appear to have 
significant effects on installed PV prices and, though the 
analytical results are less robust, on project development 
times. Among the sample of California cities analyzed, 
those with the most favourable permitting processes 
reduce average residential PV system prices by $0.27–
$0.41/W (4-6% relative to median pricing) and shorten 
development times by around 24 days (25% compared to   

 

Fig. 2: Predicted development time using permitting 
scores, all else being equal. 
 
median development time) compared with those cities 
with the most taxing permitting practices. The range of 
values depends on the regression model used, and results 
are more stable and persuasive for price impacts than they 
are for development-time impacts.  
 
Overall, these across city results are consistent with the 
literature and add to previous attempts to quantify the 

TABLE 3: REGRESSION OUTPUTS OF DEVELOPMENT TIME 
 
Development time: 
log(days) T1 T2 T3 T4 T5 

csize -0.034*** 0.006 0.007 0.011 0.008 

 
(0.009) (0.010) (0.009) (0.010) (0.009) 

res_permitting 0.104* -0.354*** -0.193*** -0.097* -0.101* 

 
(0.055) (0.059) (0.057) (0.052) (0.052) 

PG&E 0.210*** 0.026 -0.166*** 0.117** -0.173*** 

 
(0.046) (0.046) (0.052) (0.047) (0.052) 

CCSE -0.214*** -0.185*** -0.103* 0.045 -0.013 

 
(0.052) (0.051) (0.058) (0.055) (0.059) 

factor_costofliving 
 

0.263*** 0.201*** 
  

  
(0.020) (0.035) 

  medHHincome 
   

-0.005*** -0.006*** 

    
(0.001) (0.002) 

popdensity 
   

0.066*** 0.059*** 

    
(0.004) (0.006) 

weekcount 
  

0.066*** 
 

0.065*** 

   
(0.003) 

 
(0.003) 

installationdensity 
  

0.074* 
 

-0.008 

   
(0.041) 

 
(0.043) 

college 
  

-0.019*** 
 

0.004 

   
(0.004) 

 
(0.004) 

bachelor 
  

-0.009*** 
 

0.001 

   
(0.002) 

 
(0.002) 

N 3,277 3,277 3,277 3,277 3,277 
r2_a 0.067 0.125 0.212 0.143 0.221 
df_m 4 5 9 6 10 
Robust standard errors in parenthesis; *p < 0.10, **p < 0.05, ***p < 0.01.  
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national or regional average impact of permitting on 
installed costs and development times (e.g., Sunrun, 2011; 
Ardani et al., 2012; Tong, 2012). In particular, they 
demonstrate that national or regional average impacts can 
mask the more-substantial impacts that occur at a local 
level within individual cities.  
 
These findings provide some confirmation that the 
scoring mechanism used in the DOE Rooftop Solar 
Challenge is capturing real effects and, more importantly, 
illustrate the potential benefits of streamlining city-level 
permitting procedures for residential PV systems. All else 
being equal, streamlining the permitting process is found 
to potentially reduce the price of a 4-kW residential PV 
system by $1,000 or more, on average, and cut 
development time by about a month.  
 
Future work might extend the geographic reach of the 
present study to additional cities both within and outside 
of California. Because the development-time results 
presented in this study are relatively weaker than those for 
installed prices, further effort to improve the robustness of 
those results is warranted. Moving beyond installed prices 
and development time, it may also be useful to assess the 
impact of permitting on the amount of PV installed at the 
city level and/or PV installer interest in those cities.  
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